Die Nullstellen von $f$ lauten
$$
x_1 = 0, \quad x_2 = 1, \quad x_3 = 3 \ .
$$
Damit ist
$$
\begin{array}{rcl}
\int_{-2}^5 \left| f(x) \right| \ \mathrm{d}x & =& \int_{-2}^5 \left| x^3-4\,x^2+3\,x \right| \ \mathrm{d}x \\
& =& \left| \int_{-2}^0 x^3-4\,x^2+3\,x \ \mathrm{d}x \right|
\\ & &+ \left| \int_{0}^1 x^3-4\,x^2+3\,x \ \mathrm{d}x \right|
\\ & &+\left| \int_{1}^3 x^3-4\,x^2+3\,x \ \mathrm{d}x \right|
\\ & &+\left| \int_{3}^5 x^3-4\,x^2+3\,x \ \mathrm{d}x \right|
\\ & =& \left| \left[ \frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 \right]_{-2}^0 \right|
\\ & &+ \left| \left[ \frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 \right]_{0}^1 \right|
\\ & &+\left| \left[ \frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 \right]_{1}^3 \right|
\\ & &+\left| \left[ \frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 \right]_{3}^5 \right|
\\ & = &\left| \frac{1}{4} \cdot 0^4 - \frac{4}{3} \cdot 0^3 + \frac{3}{2} \cdot 0^2 - \left( \frac{1}{4} \cdot (-2)^4 - \frac{4}{3} \cdot (-2)^3 + \frac{3}{2} \cdot (-2)^2 \right) \right|
\\ & &+\left| \frac{1}{4} \cdot 1^4 - \frac{4}{3} \cdot 1^3 + \frac{3}{2} \cdot 1^2 - \left( \frac{1}{4} \cdot 0^4 - \frac{4}{3} \cdot 0^3 + \frac{3}{2} \cdot 0^2 \right) \right|
\\ & &+\left| \frac{1}{4} \cdot 3^4 - \frac{4}{3} \cdot 3^3 + \frac{3}{2} \cdot 3^2 - \left( \frac{1}{4} \cdot 1^4 - \frac{4}{3} \cdot 1^3 + \frac{3}{2} \cdot 1^2 \right) \right|
\\ & &+\left| \frac{1}{4} \cdot 5^4 - \frac{4}{3} \cdot 5^3 + \frac{3}{2} \cdot 5^2 - \left( \frac{1}{4} \cdot 3^4 - \frac{4}{3} \cdot 3^3 + \frac{3}{2} \cdot 3^2 \right) \right|
\\ & = & \left| - \frac{62}{3} \right| + \left| \frac{5}{12} \right| + \left| -\frac{8}{3} \right| + \left| \frac{88}{3} \right| \approx 53.08
\end{array}
$$